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Notations, basic assumptions

Consider a probability space (Ω,F , P) with a filtration
F = (Ft)t∈[0,T ].
Definition. An adapted process W with W0 = 0 is a standard
Brownian motion (or Wiener process) if

◮ it has continuous sample paths a.s.,

◮ the increment Wt − Ws is independent of Fs for all
s ≤ t ≤ T ,

◮ the increment Wt − Ws is normally distributed with mean 0
and variance for all t − s, s ≤ t ≤ T .
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◮ L2(Ω,F , P): the space of square integrable FT -measurable
r.v.’s.

◮ A process γ is progressively measurable, if the map
(ω, t) → γt(ω) is measurable w.r.t. the σ-algebra
B([0, t]) ×Ft .

◮ L2(W ): the class of prog. measurable processes γ for which

E

(
∫ T

0
γ2
u du

)

< ∞.

◮ Notation: ||γ||2 := E

(

∫ T

0 γ2
u du

)

.

◮ A process γ is said to be elementary if it is of the form

γt = ξ0I0 +

m−1
∑

j=0

ξj I(tj ,tj+1](t), t ∈ [0,T ],

where ξi is Fti -measurable, i = 0, . . . ,m − 1, and
0 = t0 < t1 < . . . < tm = T .
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Itô integral of an elementary process

Î (γ) =

∫ T

0
γu dWu :=

m−1
∑

j=0

ξj(Wtj+1
− Wtj ),

similarly the integral over [0, t], t ∈ [0,T ], is

Ît(γ) =

∫ t

0
γu dWu := Î (γ1[0,t]) =

m−1
∑

j=0

ξj(Wtj+1∧t − Wtj ),

Remark: Ît(γ) is a cont. martingale.
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Extension of Î

Lemma. For any elementary process γ

||̂I (γ)||2L2 = E

(
∫ T

0
γu dWu

)2

= ||γ||2W ,

i.e. Î is an isometry. The class of elementary processes is a dense
linear subspace of L2(W ).
L2(W ) is a Banach space equipped with the norm || · ||W .
Hence, there is an extension of Î such that it is an L2 isometry.
Definition. The isometry I gives the Itô integral with respect to
W, i.e.

It(γ) =

∫ t

0
γu dWu := I (γ1[0,t]).
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Remark. One can extend the definition for set of prog. measurable
processes γ with P(

∫ T

0 γ2
u du < ∞) = 1.

Theorem. If the process γ is in L2(W ) then the Itô integral It(γ)
is a square-integrable continuous martingale.
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Itô processes

Definition. A stoc. process X is an Itô process if it is of the form

Xt = X0 +

∫ t

0
αu du +

∫ t

0
βu dWu, t ∈ [0,T ],

provided that the above integrals are well defined, and α and β are
adapted processes.
Another notation for the above integral equation:

dXt = αt dt + βt dWt .
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Multidimensional Itô integral

Definition.

◮ d-dimensional standard Brownian motion:
W = (W1,W2, . . . ,Wd), where Wi ’s are mutually
independent std. Brownian motions, i = 1, 2, . . . , d .

◮ Let γ = (γ1, . . . , γd) be an adapted Rd -valued process with

P(
∫ T

0 |γ|2u du < ∞) = 1, where | · | denotes the Euclidean
norm. Then the Itô integral of γ w.r.t. W is

It(γ) =

∫ t

0
γu dWu =

d
∑

i=1

∫ t

0
γi
u dW i

u, t ∈ [0,T ].
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Itô formula in one dimension

Theorem. Let X be an Itô process,

dXt = αt dt + βt dWt

and g : R × [0,T ] → R is a function in C2,1(R × [0,T ], R).
Then the process Yt := g(Xt , t) is an Itô process, which has the
form:

dYt =

(

gt(Xt , t) + gx(Xt , t)αt +
1

2
gxx(Xt , t)β

2
t

)

dt+gx(Xt , t)βt dWt .
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Itô formula, multidimensional case

Theorem. Let X be a k-dimensional Itô process,

dX i
t = αi

t dt + βi
t dWt ,

where αi is real valued adapted process, βi is R
d valued process

s.t. the above integrals exist. Let g : R
k → R is a function in

C2(Rk , R).
Then the process Yt := g(Xt) is an Itô process, which has the
form:

dYt =





k
∑

i=1

gxi
(Xt)α

i
t +

1

2

k
∑

i ,j=1

gxixj
(Xt)βxi

βxj



 dt

+
k

∑

i=1

gxi
(Xt)β

i
t dWt .
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Product rule

Corollary. Let X 1 and X 2 be Itô processes,

dX i
t = αi

t dt + βi
t dWt , i = 1, 2.

Then Yt = X 1
t X 2

t is an Itô process with

dYt = X 1dX 2 + X 2dX 1 + β1
t β2

t dt

Remark. In fact β1
t β2

t dt is the so-called quadratic covariation
process 〈X 1,X 2〉t of X 1 and X 2.
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Filtration generated by W

Let W be a (d-dim.) std. Brownian motion.

◮ Consider first the filtration (Ft)
T∗

t=0 generated by W , i.e.
Ft = σ{Ws | 0 ≤ s ≤ t}.

◮ Define F̄t = σ{Ft ∪ N}, where N is the set of all measurable
sets in FT∗ having probability zero.

◮ Finally, define ¯̄Ft = ∩δ>0
¯Ft + δ.

◮ The filtration ( ¯̄Ft)
T∗

t=0 is called the P-complete right
continuous version of (Ft)

T∗

t=0, or simply the P-augmented
version of the filtration generated by W . In what follows, if
not stated otherwise, given a Brownian motion W we will
assume that the filtration is the P-augmented version of the
filtration generated by W .
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Doléans exponential

Let W be a d-dim. std. Brownian motion. Suppose that γ is an
adapted R

d -valued process in L(W ). Then the Doléans
exponential of It(γ) =

∫ t

0 γu dWu, t ∈ [0,T ∗], is

ξt = εt

(∫

·

0
γu dWu

)

:= exp

{∫ t

0
γu dWu −

1

2

∫ t

0
|γu|

2 du

}

.

Remark. By Itô formula one can check that ξt is the solution of
the following SDE:

dξt = ξtγt dWt .
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Equivalent measures

Let P
∗ be an equivalent probability measure to P. Denote the

Radon-Nikodým derivative (or density) by

ηT∗ =
dP

∗

dP

and in general the density process by

ηt = EP(ηT∗ | Ft), t ∈ [0,T ∗].

◮ Then the process η is strictly positive (a.s.) and it follows a
martingale.

◮ By the abstract Bayes’s formula we have that a process X is a
P
∗-martingale if and only if the process X · η is a P-martingale.
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Girsanov’s theorem

Theorem. Given a d-dim. std. Brownian motion W and a process
γ which is adapted R

d -valued in L(W ) with

EP = εT∗

(∫

·

0
γu dWu

)

= 1,

define the equivalent probability measure P
∗ by

dP
∗

dP
= εT∗

(
∫

·

0
γu dWu

)

, a.s.

Then the process W ∗ defined by

W ∗

t := Wt −

∫ t

0
γu du, t ∈ [0,T ∗],

is a standard d-dimensional Brownian motion w.r.t. P
∗.
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Remark. Given an Itô process under P of the form

dXt = α(Xt , t) dt + β(Xt , t) dWt

(with well defined integrals) suppose that
α∗(Xt , t) = α(Xt , t) + β(Xt , t) · γt a.s., t ∈ [0,T ∗]. Then we have
under P

∗

dXt = α∗(Xt , t) dt + β(Xt , t) dW ∗

t .

József Gáll University of Debrecen Tools of stochastic calculus
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Theorem. Given a probability space (Ω,F , P), let P
∗ be an

equivalent probability measure to P with dP
∗

dP
= η a.s. Suppose

that G is a σ-algebra, G ⊂ F , and ξ is an integrable random
variable w.r.t. P

∗. Then

EP∗(ξ | G) =
EP(ξη | G)

EP(η | G)
a.s.

Proof. Let ξ̄ = ξη, then one can easily show that
EP(ξ̄|G) = EP∗(ξ|G)EP(η|G), which gives the statement.
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Bibliographic notes

The main tools and facts of stochastic integration are summarised
in the main books that we use for this course, hence we refer here
to Appendix A in Cairns (2004), Appendix C in Brigo & Mercurio
(2006), and Appendix B in Musiela & Rutkowski (2005). We
mostly used the structure and notations of the latter one. For a
more detailed discussion on stochastic integration one can use
several books, we refer to Chung & Williams (1990), which gives a
nice introduction to the field.
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